TOWARDS A FRAMEWORK FOR DESIGNING SPATIAL AND NON-SPATIAL VISUALIZATIONS FOR COMMUNICATING CLIMATE CHANGE RISKS

David J. Lieske, Department of Geography and Environment
Mount Allison University, Sackville, New Brunswick

Hazards related to climate change (e.g., intensified storms, coastal flooding associated with sea level rise) are globally pervasive yet geographically-specific problems that demand societal response. Unfortunately, studies have shown that people are often unaware of (or inaccurately perceive) the true risk, thereby limiting their motivation to take steps to lower their vulnerability. Visualization of the anticipated impacts (either spatially or non-spatially) has an important role to play in risk communication, potentially avoiding peoples’ cognitive biases, helping to focus their attention, and allowing them to personally evaluate the evidence. In this paper, key findings of the risk perception literature are presented and a conceptual framework provided to help guide: (1) the identification of important information requirements (anticipating the influence of psychological effects); (2) the selection and design of visualizations; and (3) the assessment of the effectiveness of visualizations for enhancing perception of risk and inspiring a public willingness to adapt. A case study involving coastal flooding in South-East New Brunswick is referred to throughout.

Introduction

Between 1970 and 2004, global greenhouse gas (GHG) emissions grew 70% above pre-industrial levels, largely attributable to anthropogenic activities surrounding the access and use of energy supplies, transportation and industry, and forestry and agriculture [IPCC 2007]. By altering planetary energy balance, climate change is expected to lead to increased water stress (too much or too little precipitation), increased damages from extreme floods and storms, changes in species distributions, and increased severity of disease and insect outbreaks [IPCC 2007]. While a global problem, the trajectory and intensity of specific impacts will vary depending upon geographic location [e.g., IPCC 2007].

Since recognition of the importance of anthropogenic climate change in the 1980s, and debate about mitigation strategies, there has been a subsequent recognition that a certain amount of climate change is inevitable [Grothmann and Patt 2005]. This realization has shifted much of the discussion towards how to best prepare people for the subsequent impacts, with research focusing on ways to increase people’s adaptive capacity.

Visualization is central to exploratory data analysis (EDA) [Tukey 1977; MacEachern et al. 1992; Andrienko et al. 2003; Keim et al. 2005], serving to facilitate spatial reasoning and aid in the construction of scientific knowledge [MacEachern et al. 2004a]. Given its demonstrated power to inform and augment our ability to think spatially [MacEachern 1994; MacEachern et al. 2004b], geovisualization